Dieter Deublein and Angelika Steinhauser

Biogas from Waste and Renewable Resources

Further Reading

Vertes, A., Qureshi, N., Yukawa, H., Blaschek, H. (Eds.)

Biomass to Biofuels

Strategies for Global Industries

2010 ISBN: 978-0-470-51312-5

Soetaert, W., Vandamme, E. (Eds.)

Biofuels

2009 ISBN: 978-0-470-02674-8

Cocks, F. H.

Energy Demand and Climate Change Issues and Resolutions

2009 ISBN: 978-3-527-32446-0

Soetaert, W., Vandamme, E. J. (Eds.)

Industrial Biotechnology Sustainable Growth and Economic Success

201 ISBN: 978-3-527-31442-3 Stolten, D. (Ed.)

Hydrogen Energy

2010 ISBN: 978-3-527-32711-9

Garcia-Martinez, J, Moniz, E. J. (Eds.)

Nanotechnology for the Energy Challenge

2010 ISBN: 978-3-527-32401-9

Centi, G., van Santen, R. A., (Eds.)

Catalysis for Renewables From Feedstock to Energy Production

2007 ISBN: 978-3-527-31788-2

Wengenmayr, R., Bührke, T. (Eds.)

Renewable Energy Sustainable Energy Concepts for the Future

2008 ISBN: 978-3-527-40804-7

Biogas from Waste and Renewable Resources

An Introduction

Second, Revised and Expanded Edition

WILEY-VCH Verlag GmbH & Co. KGaA

The Authors

Prof. Dr.-Ing. Dieter Deublein

Deublein Consulting International Management Ritzingerstr. 19 94469 Deggendorf Germany

Dipl.-Ing. A. Steinhauser

route du Praz-Riond 18 Tower A #11-08 1564 Domdidier Switzerland All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at http://dnb.d-nb.de.

© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Boschstr. 12, 69469 Weinheim

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Composition Toppan Best-set Premedia Ltd., Hong Kong

Printing and Bookbinding Strauss GmbH, Mörlenbach

Cover Design Adam Design, Weinheim

Printed in the Federal Republic of Germany Printed on acid-free paper

ISBN: 978-3-527-32798-0

Contents

PrefaceXVIIPreface to the Second EditionXVIIISymbols and AbbreviationsXIXAcknowledgmentsXXVII

Part One Potential and History 1

General Thoughts about Energy Supply 3

- 1 Energy Supply-Today and in the Future 5
- 1.1 Primary Energy Sources 5
- 1.2 Secondary Energy Sources 7
- 1.3 End-Point Energy Sources 7
- 1.4 Effective Energy 7
- 2 Energy Supply in the Future-Scenarios 9
- 3 Potential for Transforming Biomass into End-Point Energy Sources 11
- 3.1 Amount of Available Area 14
- 3.2 Theoretical Potential 15
- 3.2.1 C3 Plants (Energy Plants) 17
- 3.2.2 C4 Plants and CAM Plants 19
- 3.2.3 Micro-algae 22
- 3.3 Technical Potential 23
- 3.4 Economic Potential 25
- 3.5 Realizable Potential 25
- 4 History and Status to Date in Europe 31
- 4.1 First Attempts at Using Biogas 31
- 4.2 Second Attempts at Using Biogas 34

١v

VI Contents

5

4.3	Third Attempts at Applying Biogas 35	
4.4	Status to Date and Perspective in Europe	36

History and Status to Date Worldwide 39

- 5.1 History and Status to Date in China 40
- 5.1.1 Period from 1970 to 1983 40
- 5.1.2 Period from 1984 to 1991 41
- 5.1.3 Period from 1992 to 1998 41
- 5.1.3.1"A Pit with Three Rebuildings"43
- 5.1.3.2 "Four in One" 43
- 5.1.3.3 "Pig–Biogas–Fruits" 43
- 5.1.4Period from 1999 Onwards43
- 5.2 History and Status to Date in India 44
- 5.3 Status to Date in America 46
- 5.4 Status to Date in the CIS States 47

General Aspects of the Recovery of Biomass in the Future 49

10.1002/9783527632794.fmatter, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/9783527632794.fmatter, Wiley Online Library on [12032025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002/978327632794.fmatter, Wiley Online Library on [12032025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002/978327632794.fmatter, Wiley Online Library on [12032025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002/978327632794.fmatter, Wiley Online Library on [12032025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002/978327632794.fmatter, Wiley Online Library on [12032025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002/978327632794.fmatter, Wiley.online.library on [12032025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002/978327632794.fmatter, Wiley.online.library.wiley.com/doi/10.1002/978327632794.fmatter, Wiley.online.library.onli

Part Two

6

Substrates and Biogas 51

Introduction 53

7	Substrate 55
7.1	Agricultural Products 55
7.1.1	Liquid Manure and Co-substrates 62
7.1.2	Maize as the Only Main Crop 67
7.1.3	Bioenergy of Forage Beets 68
7.1.4	Grass 68
7.1.5	Sorghum 69
7.1.6	Crop Rotations 69
7.1.6.1	Forage Rye + Maize 71
7.1.6.2	Winter Barley + Maize 71
7.1.6.3	Hybrid Rye + Sorghum 71
7.1.6.4	Rye + Annual Ryegrass + Maize 71
7.1.6.5	Perennial Ryegrass + Sorghum 72
7.2	Biowaste from Collections of Residual Waste and Domestic Waste
	Like Commercial Waste 72
7.3	Landfill for Residual Waste 75
7.4	Sewage Sludge and Co-substrate 75
7.5	Industrial Waste Water 79
7.6	Waste Grease or Fat 80
7.7	Cultivation of Algae 81
7.8	Plankton 82
7.9	Sediments in the Sea 82
7.10	Wood, Straw 83

nts

Contents VII

8 E	Biogas 85
8.1 H	Biogas Compared with Other Methane-Containing Gases 85
8.2 I	Detailed Overview of Biogas Components 89
8.2.1 N	Methane and Carbon Dioxide 90
8.2.2	Nitrogen and Oxygen 92
8.2.3	Carbon Monoxide 92
8.2.4 A	Ammonia 93
8.2.5 H	Hydrogen Sulfide 93
8.2.6	Water Vapor 94
8.2.7 0	Chlorine, Fluorine, Mercaptans 95
8.2.8 H	BTX, PAHs, etc. 95
8.2.9	Siloxanes 95

Part Three Formation of Biogas 97

- 9 Biochemistry 99
- **10 Bioreactions** 101
- 10.1 Hydrolysis 103
- 10.2 Acidogenic Phase 103
- 10.3 Acetogenic Phase 105
- 10.4 Methanogenic Phase 108

11 Process Parameters 111

- 11.1 Parameter: Hydrogen Partial Pressure 112
- 11.2 Parameter: Concentration of the Microorganisms (Ensilage,
- Recirculation of Biomass) 112
- 11.3Parameter: Type of Substrate114
- 11.4 Parameter: Specific Surface Area of Material 115
- 11.5 Parameter: Disintegration 116
- 11.6 Parameter: Cultivation, Mixing, and Volume Load 121
- 11.7 Parameter: Light 123
- 11.8 Parameter: Temperature 124
- 11.9 Parameter: pH 125
- 11.10 Parameter: Redox Potential 127
- 11.11 Parameter: Nutrients (C:N:P Ratio) 127
- 11.12 Parameter: Precipitants (Calcium Carbonate, Magnesium Ammonium Phosphate, Apatite) 129
- 11.13 Parameter: Biogas Removal 129
- 11.14 Parameter: Inhibitors 130
- 11.14.1 Oxygen 131
- 11.14.2 Sulfur Compounds 131
- 11.14.3 Organic Acids (Fatty Acids and Amino Acids) 133
- 11.14.4 Nitrate (NO₃) 135
- 11.14.5 Ammonium (NH_4^+) and Ammonia (NH_3) 135

ш	Contents

11.14.6	Heavy Metals 137	
11.14.7	Tannins, Saponins, Mimosine 137	
11.14.8	Other Inhibiting Thresholds 140	
11.15	Parameter: Degree of Decomposition 142	
11.16	Parameter: Foaming and Scum Formation	142

Part Four	Microorg	anisms in	Methanogenic	Ecosystems	145
-----------	----------	-----------	--------------	------------	-----

12	Methanogenic Ecosystems 147		
12.1	Ecosystems in the Gastrointestinal Tract		
	of Ruminants 147		
12.1.1	The Gastrointestinal Tract 148		
12.1.2	Microorganisms in the Rumen 148		
12.1.2.1	Environmentally Sensitive Conditions in		
	the Rumen 149		
12.1.2.2	Feedstuff-Associated Conditions in the Rumen 149		
12.2	Ecosystems in the Gastrointestinal System		
	of Herbivores 151		
12.2.1	Gastrointestinal System of Herbivores 151		
12.2.2	Microorganisms in the Stomach of Herbivores 151		
12.3	Ecosystems in the Intestine of Termites 153		
12.3.1	The Intestinal Tract in Termites 154		
12.3.2	Microorganisms in the Intestinal Tract		
	of Termites 154		
12.4	Ecosystem in the Soil of a Paddy Field 155		
12.5	Ecosystems in a Biogas Reactor 156		
13	Microorganisms in Methanation 159		
13.1	Protists 159		
13.2	Fungi 162		
13.3	Bacteriophages 163		
13.4	Bacteria and Archaea 163		
13.4.1	Hydrolyzing Genera 168		
13.4.2	Acidogenic Genera 171		
13.4.3	Acetogenic Bacteria 171		
13.4.4	Methanogens 174		
13.4.5	Methanotrophic Microorganisms 184		

Part Five	Dangers with Biogas Plants and Laboratory Equipment	185
-----------	---	-----

14	Guidelines	and	Regulations	187
----	------------	-----	-------------	-----

14.1 Regulations Relating to the Construction of Plants 188

14.2 Biomass and Residue 189

VII

Feeding Biogas to the Gas Network 14.3 189 Risk of Explosion 14.4 190 14.5 Risk of Fire 198 Harmful Exhaust Gases 14.6 201 Germs 201 14.6.1 14.6.2 Emissions of Smells 202 14.7 Noise Protection 210 14.8 Prevention of Injuries 212 Protection from Water 213 14.9 15 The Biogas Laboratory 217 15.1 Laboratory Digesters with Eudiometers 217 15.2 Pilot Fermenter 217 15.3 Larger Pilot Plants for Batchwise or Continuous Fermentation Tests 219 Analyses 219 15.415.4.1 Sampling 220 15.4.2 Preparation of Samples 220 15.4.3 Analytics 221 15.4.3.1 Gas Yield of Substrates 221 Dry Matter and Organic Dry Matter (TOC), 15.4.3.2 Loss on Ignition 221 15.4.3.3 Degree of Decomposition 222 15.4.3.4 Elution with Water (ISO 11465) 226 15.4.3.5 Quantity of Gas 226 15.4.3.6 Gas Composition 227 15.4.3.7 Acid Value 229 15.4.3.8 FOS/TAC Value 230 Determination of Nutrients (Nitrogen and Phosphorus 15.4.3.9 Compounds) 230 15.4.3.10 Sludge Volume Index 230

Part Six Equipment of a Biogas Plant 231

16 Tanks and Bioreactors 233

- 16.1 Brick Tanks 235
- 16.1.1 Brickwork and Mortar 238
- 16.2 Reinforced Concrete Tanks 239
- 16.2.1 Surface Protection by Painting 241
- 16.2.2 Surface Protection by Tanks with Double Walls 242
- 16.3Tanks of Normal Steel Sheet Metals with an Enamel Layer or
Plastic Coating 242
- 16.4 Tanks of Stainless Steel 243
- 16.5 Ground Basin with Plastic Foil Lining 243

x	Contents	
1	17	Equipment for Tempering the Substrate 245
	18	Thermal Insulation 249
	19	Agitators 251
	19.1	Mechanical Agitation 251
	19.1.1	Submersible Motor-Propeller Agitators 252
	19.1.2	Axial Agitators, Hand-Held Blenders 252
	19.1.3	Reel Agitators or Paddle Agitators 254
	19.1.4	Grindel Agitators 254
	19.1.5	Agitating Chain (Figure 19.4) 254
	19.1.6	Screw Conveyor Mixer 255
	19.2	Circulation Pumps 256
	19.3	Gas Injection into the Digestion Tower 256
	19.4	Stirring Effect by Gas Formation 257
	20	Mixing of Biomass and Water 259
	21	Machines to Separate the Liquid from the Biomass 261
	21.1	Belt-type Press 261
	21.2	Filter Press 261
	21.3	Decanters 262
	22	Pipes 265
	22.1	Substrate Pipework 265
	22.2	Gas Pipes 266
	23	Pumps 269
	23.1	Submerged Centrifugal Pump, Submerged Motor
		Centrifugal Pump 269
	23.2	Eccentric Screw Pump, Eccentric
		Rotor Pump 270
	24	Measurement, Control, and Automation Technology 271
	24.1	Mechanisms for Monitoring and Regulation 271
	24.1.1	Quantity of Gas and Gas Composition 272
	24.1.2	Temperature 273
	24.1.3	pH Value and Redox Potential 273
	24.1.4	Organic Dry Matter–Volumetric Loading 273
	24.1.5	Biology 274
	24.2	Equipment to Guarantee Operating Safety 274
	24.2.1	Safety Device in Front of the Gas Flare 274
	24.2.2	Safety Devices to Counteract Overpressure and
		Negative Pressure 275

10.1002/9783527632794 fmatter; Downloaded from https://onlineliburgy.wily.com/doi/10.1002/978357632794.fmatter; Wiley Online Library on [1205/2025]. See the Terms and Conditions (https://onlineliburgy.wiley.com/etma-and-conditions) on Wiley Online Library for rules of use; OA attacks are governed by the applicable Creative Commons License

289

101/002/978527632794 fmatter, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/978327632794 fmatter, Wiley Online Library on [12/03/20/25]. See the Terms and Conditions (https://onlinelibrary.wiley.com/etimes.and-conditions) on Wiley Online Library for rules of use; O A article are governed by the applicable Creative Commons Lisense

Exhaust Air Cleaning 277 25

Part Seven	Upstream and Downstream Processing 279
26	Transportation and Storage of the Biomass 281
26.1	Transport and Means of Transport 281
26.2	Storage Silos 281
26.2.1	Transport Within the Plant 284
27	Process Technology for Upstream Processing 285
27.1	Adjustment of the Water Content 285
27.2	Removal of Impurities/Harmful Substances (Figure 27.3)
27.3	Comminution 290
27.4	Hygienization 291
27.4.1	Direct Inspection 292
27.4.1.1	Salmonella 293
27.4.1.2	Plasmodiophora Brassicae 293
27.4.1.3	Tobacco Mosaic Virus 294
27.4.1.4	Tomato Seeds 294
27.4.2	Indirect Process Inspection 294
27.4.3	Control of the Finished Goods 295
27.5	Disintegration 295
27.5.1	Mechanical Processes (Figure 27.8) 301
27.5.2	Ultrasonic Process 303
27.5.3	Chemical Processes 304
27.5.3.1	Hydrochloric Acid 304
27.5.3.2	APTMP- and CTMP-processes 305
27.5.3.3	Chemical Oxidation 305
27.5.4	Thermal Processes 306
28	Feeding 311
28.1	Feeding with Substrate 311
28.2	Feeding with Additives 312
28.2.1	Prebiotics 313
28.2.2	Enzymes 314
28.2.3	Probiotics 315
28.2.4	Chemicals 316
29	Digested Residue 321
29.1	Pressing of the Fermentation Residue 323
29.2	Drying 324
30	Wastewater 325

XII Contents

Part Eight	Fermentation-Agricultural Plant 327
31	Batchwise and Continuous Processes Without Separators 329
31.1	Floating Cup Reactor 330
31.2	Fixed-Dome Reactor 330
31.3	Deenbandhu Model 332
31.4	Plastic Bag Reactor and Plastic
	Silo Reactor 332
31.5	Cavern Plants 333
31.6	One-Stage Agricultural Biogas Plants 333
31.6.1	Reactor Technology 335
31.6.2	Reactor Size 337
31.6.3	Covering of the Bioreactor 338
31.6.4	Access Door and Inlet 339
31.6.5	Drainage Layer Below the Bioreactor 339
31.6.6	Heat Insulation and Heating 340
31.6.7	Final Depot and Spreading 341
32	Existing Installations from Different Suppliers 343
32.1	WABIO-Vaasa Process 343
32.2	DUT Process 343
32.3	Entec Process 344
32.4	Bigadan™ Process (Formerly Krüger Process) 345
32.5	Valorga™ Process 346
33	Operation of a Plant Without Separation Equipment 349
33.1	Start-up 349
33.2	Start-up of the Plant 350
33.3	Operation of the Plant 351
34	Benefits of a Biogas Plant 353
35	Typical Design Calculation for an Agricultural Biogas Plant 357
36	Economics Calculations for Biogas Plants 365
36.1	Capital-Bound Costs Per Year in US\$ 365
36.2	Consumption-Bound Costs Per Year 366
36.3	Operation-Bound Costs Per Year 367
36.4	Other Costs Per Year 367
36.5	Total Costs 367
36.6	Income Per Year 368
36.7	Annual Revenue of the
	Biogas Plant 368
37	Efficiency 369

10.1002/978527632794.Imater, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/978357532794.Imater, Wiley Online Library or rules of use; OA articles are governed by the applicable Creative Commons License 10.1002/978527632794.Imater, Downloaded from https://onlinelibrary.wiley.com/ema-and-conditions) on Wiley Online Library or rules of use; OA articles are governed by the applicable Creative Commons License

Part Nine	Fermentation-Industrial Plants 373
	Fermentation 375
38	Installation with Substrate Dilution and Subsequent
	Water Separation 377
38.1	Process Engineering 377
38.2	Implemented Installations of Different Manufacturers 377
39	Installation with Biomass Accumulation 381
39.1	Sewage Sludge Digestion Tower Installation 381
39.1.1	Size of the Digestion Tower 382
39.1.2	Internal Phase Separation for Biomass Concentration 385
39.1.3	External Phase Separation for Feedback of Biomass 386
39.1.3.1	Sedimentation Tank 386
39.1.3.2	Lamellar Settler 386
39.1.3.3	Membrane Filter 387
39.1.3.4	Flotation 387
39.1.3.5	Centrifuge 387
39.1.4	Facilities to Prevent Post-Gassing 387
39.1.4.1	Ventilation 388
39.1.4.2	Vacuum Degassing 388
39.1.4.3	Cooling 388
39.1.4.4	Agitators 388
39.1.4.5	Addition of Flocculating Agents and
	Flocculation-Aiding Agents 389
39.1.5	Operation of the Digestion Tower 389
39.1.5.1	Energy Consumption 391
39.1.6	Plant Installations 392
39.1.6.1	Contact Process (Figure 39.6) 392
39.1.6.2	Uhde–Schwarting Process 392
39.1.6.3	Continuously Stirred Tank Reactor (Figure 39.8) 393
39.2	Sludge-Bed Reactor 394
39.2.1	Reactor Design and Ratings 396
39.2.2	Assumptions for the Operation of a
	Sludge-Bed Reactor 399
39.2.3	Operation of a Sludge-Bed Reactor 400
39.2.4	Plant Installations 401
39.2.4.1	Hybrid Reactor (UASB/Filters) 401
39.2.4.2	Loop Reactor 401
39.3	Reactors with Immobilized Microorganisms 402
39.3.1	Biofilm 403
39.3.2	Fixed-Bed Reactor, Filter Reactor,
	Fixed-Film Reactor 405
39.3.3	Expanded-Bed Reactor, Fluidized-Bed Reactor 406

XIV	Contents
-----	----------

40	Plants with Separation of Non-Hydrolyzable Biomass 409
40.1	Process Engineering and Equipment Construction 410
40.2	Efficiency 411
40.3	Plant Installations 412
40.3.1	Anaerobic Baffled Reactors 412
40.3.2	BTA Process 412
41	Percolation Process 415
41.1	Dry Fermentation Process in a Stack 415
41.2	AN/Biothane [™] Process 416
41.3	Prethane [™] /Rudad [™] -Biopaq [™] Process or ANM Process 417
41.4	Foil Hose Process 418
41.5	IMK Process 418
41.6	Dry Anaerobic Composting 419
41.7	Aerobic–Anaerobic–Aerobic Process (3A Process) 420
41.8	Fermentation Channel Process 421
42	Special Plant Installations 423
42.1	Combined Fermentation of Sewage Sludge and Biowaste 423
42.2	Biowaste Plants 425
42.3	Purification of Industrial Wastewater 430
Part Ten	Biogas Storage and Preparation 431
Part Ten 43	
	Biogasholder 433
43	Biogasholder 433 Biogasholder Types 433
43 43.1	Biogasholder 433 Biogasholder Types 433 Low-Pressure Biogasholder 435
43 43.1 43.1.1	Biogasholder 433 Biogasholder Types 433 Low-Pressure Biogasholder 435
43 43.1 43.1.1 43.1.1.1	Biogasholder 433 Biogasholder Types 433 Low-Pressure Biogasholder 435 Double-Membrane Biogasholders 435
43 43.1 43.1.1 43.1.1.1 43.1.1.2	Biogasholder 433 Biogasholder Types 433 Low-Pressure Biogasholder 435 Double-Membrane Biogasholders 435 Biogas Bags 435
43 43.1 43.1.1 43.1.1.1 43.1.1.2 43.1.1.3	Biogasholder 433 Biogasholder Types 433 Low-Pressure Biogasholder 435 Double-Membrane Biogasholders 435 Biogas Bags 435 Other Low-Pressure Biogasholders 436
43 43.1 43.1.1 43.1.1.1 43.1.1.2 43.1.1.3 43.1.2	Biogasholder 433 Biogasholder Types 433 Low-Pressure Biogasholder 435 Double-Membrane Biogasholders 435 Biogas Bags 435 Other Low-Pressure Biogasholders 436 Medium- and High-Pressure Biogasholders 436
43 43.1 43.1.1 43.1.1.1 43.1.1.2 43.1.1.3 43.1.2 43.2	Biogasholder 433 Biogasholder Types 433 Low-Pressure Biogasholder 435 Double-Membrane Biogasholders 435 Biogas Bags 435 Other Low-Pressure Biogasholders 436 Medium- and High-Pressure Biogasholders 436 Gas Flares 437
43 43.1 43.1.1 43.1.1.1 43.1.1.2 43.1.1.3 43.1.2 43.2 44	 Biogasholder 433 Biogasholder Types 433 Low-Pressure Biogasholder 435 Double-Membrane Biogasholders 435 Biogas Bags 435 Other Low-Pressure Biogasholders 436 Medium- and High-Pressure Biogasholders 436 Gas Flares 437 Gas Preparation 439
43 43.1 43.1.1 43.1.1.1 43.1.1.2 43.1.1.3 43.1.2 43.2 44 44.1	 Biogasholder 433 Biogasholder Types 433 Low-Pressure Biogasholder 435 Double-Membrane Biogasholders 435 Biogas Bags 435 Other Low-Pressure Biogasholders 436 Medium- and High-Pressure Biogasholders 436 Gas Flares 437 Gas Preparation 439 Removal of Hydrogen Sulfide 442
43 43.1 43.1.1 43.1.1.1 43.1.1.2 43.1.1.3 43.1.2 43.2 44 44.1 44.1	 Biogasholder 433 Biogasholder Types 433 Low-Pressure Biogasholder 435 Double-Membrane Biogasholders 435 Biogas Bags 435 Other Low-Pressure Biogasholders 436 Medium- and High-Pressure Biogasholders 436 Gas Flares 437 Gas Preparation 439 Removal of Hydrogen Sulfide 442 Biological Desulfurization 442
43 43.1 43.1.1 43.1.1.1 43.1.1.2 43.1.1.3 43.1.2 43.2 44 44.1 44.1.1 44.1.1	 Biogasholder 433 Biogasholder Types 433 Low-Pressure Biogasholder 435 Double-Membrane Biogasholders 435 Biogas Bags 435 Other Low-Pressure Biogasholders 436 Medium- and High-Pressure Biogasholders 436 Gas Flares 437 Gas Preparation 439 Removal of Hydrogen Sulfide 442 Biological Desulfurization 442 Immobilization in the Bioreactor 445
43 43.1 43.1.1 43.1.1.1 43.1.1.2 43.1.1.3 43.1.2 43.2 44 44.1 44.1.1 44.1.1 44.1.1	 Biogasholder 433 Biogasholder Types 433 Low-Pressure Biogasholder 435 Double-Membrane Biogasholders 435 Biogas Bags 435 Other Low-Pressure Biogasholders 436 Medium- and High-Pressure Biogasholders 436 Gas Flares 437 Cas Preparation 439 Removal of Hydrogen Sulfide 442 Biological Desulfurization 442 Immobilization in the Bioreactor 445 Sulfide Precipitation 447
43 43.1 43.1.1 43.1.1 43.1.12 43.1.13 43.1.2 43.2 44 44.1 44.1.1 44.1.1 44.1.2 44.1.3	 Biogasholder 433 Biogasholder Types 433 Low-Pressure Biogasholder 435 Double-Membrane Biogasholders 435 Biogas Bags 435 Other Low-Pressure Biogasholders 436 Medium- and High-Pressure Biogasholders 436 Gas Flares 437 Gas Preparation 439 Removal of Hydrogen Sulfide 442 Biological Desulfurization 442 Immobilization in the Bioreactor 445 Sulfide Precipitation 447 Absorption in a Ferric Chelate Solution 447
43 43.1 43.1.1 43.1.1.1 43.1.1.2 43.1.1.3 43.1.2 43.2 44 44.1 44.1.1 44.1.1 44.1.1 44.1.2 44.1.3 44.1.4	 Biogasholder 433 Biogasholder Types 433 Low-Pressure Biogasholder 435 Double-Membrane Biogasholders 435 Biogas Bags 435 Other Low-Pressure Biogasholders 436 Medium- and High-Pressure Biogasholders 436 Gas Flares 437 Gas Preparation 439 Removal of Hydrogen Sulfide 442 Biological Desulfurization 442 Immobilization in the Bioreactor 445 Sulfide Precipitation 447 Absorption in a Ferric Chelate Solution 447 Adsorption at Iron-Containing Masses 448
43 43.1 43.1.1 43.1.1.1 43.1.1.2 43.1.1.3 43.1.2 43.2 44 44.1 44.1.1 44.1.1 44.1.1 44.1.2 44.1.3 44.1.4 44.1.5	 Biogasholder 433 Biogasholder Types 433 Low-Pressure Biogasholder 435 Double-Membrane Biogasholders 435 Biogas Bags 435 Other Low-Pressure Biogasholders 436 Medium- and High-Pressure Biogasholders 436 Gas Flares 437 Gas Preparation 439 Removal of Hydrogen Sulfide 442 Biological Desulfurization 442 Immobilization in the Bioreactor 445 Sulfide Precipitation 447 Absorption in a Ferric Chelate Solution 447 Adsorption at Iron-Containing Masses 448 Adsorption on Activated Charcoal 449

10.1002/9783527632794 fmatter; Downloaded from https://onlineliburgy.wily.com/doi/10.1002/978357632794.fmatter; Wiley Online Library on [1205/2025]. See the Terms and Conditions (https://onlineliburgy.wiley.com/etma-and-conditions) on Wiley Online Library for rules of use; OA attacks are governed by the applicable Creative Commons License

	Contents
44.1.9	Direct Oxidation 451
44.1.10	Compressed Gas Scrubbing 451
44.1.10	Molecular Sieves 451
44.1.11	Removal of the Carbon Dioxide 451
=	
44.2.1	Gas Converter 454
44.2.2	Absorption 455
44.2.3	Absorbents Based on Glycol and Ethanolamines 457
44.2.4	Adsorption with Pressure Swing Technology 458
44.2.5	Adsorption with Pressure Swing Technology Under Vacuum 459
44.2.6	Diaphragm Technology 460
44.2.7	Mineralization and Biomineralization 461
44.2.8	Cryogenic Biogas Purification 461
44.3	Removal of Oxygen 462
44.4	Removal of Water 462
44.5	Removal of Ammonia 463
44.6	Removal of Siloxanes 464
45	Quantities of Gas and Measurement of Gas Quality 465
46	Liquefaction or Compression of the Biogas 467
46.1	Liquefaction 467
46.2	Compression 469
	1
Part Eleven	Biogas Utilization 471
Part Eleven	Biogas Utilization 471
Part Eleven	-
Part Eleven	Biogas Utilization 471 Utilization of Biogas to Generate Electric Power and Heat 473
	Utilization of Biogas to Generate Electric Power and Heat 473
Part Eleven 47	-
47	Utilization of Biogas to Generate Electric Power and Heat 473 Utilization of Gas Exclusively to Generate Heat 475
47 48	Utilization of Biogas to Generate Electric Power and Heat473Utilization of Gas Exclusively to Generate Heat475Utilization of Gas to Generate Current and Heat477
47 48 48.1	Utilization of Biogas to Generate Electric Power and Heat473Utilization of Gas Exclusively to Generate Heat475Utilization of Gas to Generate Current and Heat477Supply of Current to the Public Power Network477
47 48 48.1 48.1.1	Utilization of Biogas to Generate Electric Power and Heat473Utilization of Gas Exclusively to Generate Heat475Utilization of Gas to Generate Current and Heat477Supply of Current to the Public Power Network477Generators479
47 48 48.1 48.1.1 48.1.2	Utilization of Biogas to Generate Electric Power and Heat473Utilization of Gas Exclusively to Generate Heat475Utilization of Gas to Generate Current and Heat477Supply of Current to the Public Power Network477Generators479Current-Measuring Instruments479
47 48 48.1 48.1.1 48.1.2 48.1.3	Utilization of Biogas to Generate Electric Power and Heat473Utilization of Gas Exclusively to Generate Heat475Utilization of Gas to Generate Current and Heat477Supply of Current to the Public Power Network477Generators479Current-Measuring Instruments479Control of the Synchronization480
47 48 48.1 48.1.1 48.1.2 48.1.3 48.1.4	Utilization of Biogas to Generate Electric Power and Heat473Utilization of Gas Exclusively to Generate Heat475Utilization of Gas to Generate Current and Heat477Supply of Current to the Public Power Network477Generators479Current-Measuring Instruments479Control of the Synchronization480Switching Devices480
47 48 48.1 48.1.1 48.1.2 48.1.3 48.1.4 48.1.5	Utilization of Biogas to Generate Electric Power and Heat473Utilization of Gas Exclusively to Generate Heat475Utilization of Gas to Generate Current and Heat477Supply of Current to the Public Power Network477Generators479Current-Measuring Instruments479Control of the Synchronization480Switching Devices480Network Failure Registration480
47 48 48.1 48.1.1 48.1.2 48.1.3 48.1.4 48.1.5 48.1.6	Utilization of Biogas to Generate Electric Power and Heat473Utilization of Gas Exclusively to Generate Heat475Utilization of Gas to Generate Current and Heat477Supply of Current to the Public Power Network477Generators479Current-Measuring Instruments479Control of the Synchronization480Switching Devices480Network Failure Registration480Short-Circuit Protection481
47 48 48.1 48.1.1 48.1.2 48.1.3 48.1.4 48.1.5 48.1.6 48.1.7	Utilization of Biogas to Generate Electric Power and Heat473Utilization of Gas Exclusively to Generate Heat475Utilization of Gas to Generate Current and Heat477Supply of Current to the Public Power Network477Generators479Current-Measuring Instruments479Control of the Synchronization480Switching Devices480Network Failure Registration480Short-Circuit Protection481Wattless Current Compensation481
47 48 48.1 48.1.1 48.1.2 48.1.3 48.1.4 48.1.5 48.1.6 48.1.7 48.2	Utilization of Biogas to Generate Electric Power and Heat473Utilization of Gas Exclusively to Generate Heat475Utilization of Gas to Generate Current and Heat477Supply of Current to the Public Power Network477Generators479Current-Measuring Instruments479Control of the Synchronization480Switching Devices480Network Failure Registration480Short-Circuit Protection481Wattless Current Compensation481Heat482
47 48 48.1 48.1.1 48.1.2 48.1.3 48.1.4 48.1.5 48.1.6 48.1.7 48.2 48.3	Utilization of Biogas to Generate Electric Power and Heat 473Utilization of Gas Exclusively to Generate Heat 475Utilization of Gas to Generate Current and Heat 477Supply of Current to the Public Power Network 477Generators 479Current-Measuring Instruments 479Control of the Synchronization 480Switching Devices 480Network Failure Registration 480Short-Circuit Protection 481Wattless Current Compensation 481Heat 482Combined Heat and Power Generator (CHP) 483
47 48 48.1 48.1.1 48.1.2 48.1.3 48.1.4 48.1.5 48.1.6 48.1.7 48.2	Utilization of Biogas to Generate Electric Power and Heat473Utilization of Gas Exclusively to Generate Heat475Utilization of Gas to Generate Current and Heat477Supply of Current to the Public Power Network477Generators479Current-Measuring Instruments479Control of the Synchronization480Switching Devices480Network Failure Registration480Short-Circuit Protection481Heat482Combined Heat and Power Generator (CHP)483Engines483
47 48 48.1 48.1.1 48.1.2 48.1.3 48.1.4 48.1.5 48.1.6 48.1.7 48.2 48.3	Utilization of Biogas to Generate Electric Power and Heat 473Utilization of Gas Exclusively to Generate Heat 475Utilization of Gas to Generate Current and Heat 477Supply of Current to the Public Power Network 477Generators 479Current-Measuring Instruments 479Control of the Synchronization 480Switching Devices 480Network Failure Registration 480Short-Circuit Protection 481Wattless Current Compensation 481Heat 482Combined Heat and Power Generator (CHP) 483
47 48 48.1 48.1.1 48.1.2 48.1.3 48.1.4 48.1.5 48.1.6 48.1.7 48.2 48.3 48.3.1	Utilization of Biogas to Generate Electric Power and Heat473Utilization of Gas Exclusively to Generate Heat475Utilization of Gas to Generate Current and Heat477Supply of Current to the Public Power Network477Generators479Current-Measuring Instruments479Control of the Synchronization480Switching Devices480Network Failure Registration480Short-Circuit Protection481Heat482Combined Heat and Power Generator (CHP)483Engines483
47 48 48.1 48.1.1 48.1.2 48.1.3 48.1.4 48.1.5 48.1.6 48.1.7 48.2 48.3 48.3.1	Utilization of Biogas to Generate Electric Power and Heat 473 Utilization of Gas Exclusively to Generate Heat 475 Utilization of Gas to Generate Current and Heat 477 Supply of Current to the Public Power Network 477 Generators 479 Current-Measuring Instruments 479 Control of the Synchronization 480 Switching Devices 480 Network Failure Registration 480 Short-Circuit Protection 481 Wattless Current Compensation 481 Heat 482 Combined Heat and Power Generator (CHP) 483 Engines 483 Generation of Electricity in a Four-Stroke Gas Engine and
47 48 48.1 48.1.1 48.1.2 48.1.3 48.1.4 48.1.5 48.1.6 48.1.7 48.2 48.3 48.3.1 48.3.1.1	Utilization of Biogas to Generate Electric Power and Heat 473 Utilization of Gas Exclusively to Generate Heat 475 Utilization of Gas to Generate Current and Heat 477 Supply of Current to the Public Power Network 477 Generators 479 Current-Measuring Instruments 479 Control of the Synchronization 480 Switching Devices 480 Network Failure Registration 480 Short-Circuit Protection 481 Wattless Current Compensation 481 Heat 482 Combined Heat and Power Generator (CHP) 483 Engines 483 Generation of Electricity in a Four-Stroke Gas Engine and a Diesel Engine 485
47 48 48.1 48.1.1 48.1.2 48.1.3 48.1.4 48.1.5 48.1.6 48.1.7 48.2 48.3 48.3.1 48.3.1.1 48.3.1.2	Utilization of Biogas to Generate Electric Power and Heat473Utilization of Gas Exclusively to Generate Heat475Utilization of Gas to Generate Current and Heat477Supply of Current to the Public Power Network477Generators479Current-Measuring Instruments479Control of the Synchronization480Switching Devices480Network Failure Registration480Short-Circuit Protection481Heat482Combined Heat and Power Generator (CHP)483Engines483Generation of Electricity in a Four-Stroke Gas Engine anda Diesel Engine485Generation of Electricity in a Stirling Engine489

XVI Contents

48.3.1.4	Generation of Electricity in a Gas Turbine 494
48.3.1.5	Generation of Electricity in a Micro Gas Turbine 497
48.3.2	Controlling the CHP 500
48.3.3	Emission Control 501
48.3.3.1	Regulations 502
48.3.3.2	Measures for the Reduction of Emissions 502
48.4	Lessons Learnt from Experience 504
48.5	Economy 507
	, ,
49	Biogas for Feeding into the Natural Gas Network 509
49.1	Biogas for Feeding into the Natural Gas Network in
	Switzerland 512
49.2	Biogas for Feeding into the Natural Gas Network in Sweden 513
49.3	Biogas for Feeding into the Natural Gas Network in
	Germany 514
50	Biogas as Fuel for Vehicles 517
50.1	Requirements on Gas When Used as Fuel 517
50.2	Vehicles 517
50.3	Gasoline Station 518
	Literature 521

Literature 521 Index 539

10.1002/978527632794. Initiate; Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/978327632794. Initiate; Wiley Online Library on [1203/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002/978327632794. Initiate; Wiley Online Library on [1203/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002/978327632794. Initiate; Wiley Online Library on [1203/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002/978327632794. Initiate; Wiley Online Library on [1203/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002/978327632794. Initiate; Wiley Online Library on [1203/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002/978327632794. Initiate; Wiley Online Library on [1203/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002/978327632794. Initiate; Wiley Online Library on [1203/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002/978327632794. Initiate; Wiley Online Library on [1203/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002/978327632794. Initiate; Wiley Online Library on [1203/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002/978327632794. Initiate; Wiley Online Library on [1203/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002/978327632794. Initiate; Wiley Online Library on [1203/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002/978327632794. Initiate; Wiley Online Library on [1203/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002/978327632794. Initiate; Wiley Online Library on [1203/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002/978327632794. Initiate; Wiley Online Library on [1203/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002/978327632794. Initiate; Wiley Online Library on [1203/2025]. See

Preface

Rising crude oil prices force us to think more about alternative energies. Among different technologies, solar energy is considered most effective even with regard to the environmental protection of plants. Visionaries think that biomass will probably convert solar energy best and will substitute all fossil energy resources in future.

In recent decades, many companies have rigged many biogas plants worldwide. A lot of experience was gained, leading to continuous process optimization of anaerobic fermentation and the development of new and more efficient applications. Overall, the basic knowledge of biogas production, the microorganisms involved, and the biochemical processes was widely extended.

This knowledge and the new ideas have now been put together as a basis to lead and initiate discussions. Since the technological solutions of technical problems in the field of anaerobic digestion of waste water, sewage sludge, and agricultural products are starting slowly to drift apart, without any valid reason, this book is meant to present a consolidation of knowledge in the different fields, so that learning can be leveraged more easily and applications can be harmonized.

The book comprises detailed descriptions of all the process steps to be followed during biogas production, from the preparation of a suitable substrate to the use of biogas, the end product. Each individual stage is assessed and discussed in detail, taking the different aspects such as application and potential into account. Biological, chemical, and engineering processes are detailed in the same way as apparatus, automatic control, energy, and safety engineering. With the help of this book, both tyros and experts should be able to learn or refresh their knowledge, due to its concentrated form with a simple and clear structure and many illustrations. The book can also be used as a reference book, given its many tables and large index. It is strongly recommended for planners and operators of biogas plants as it gives good advice to maximize the potential of the plant.

Originally I collected data and information about biogas plants just out of curiosity. I wanted to know all the details in order to teach my students at the University of Applied Sciences in Munich comprehensively. For about 5 years I surfed the Internet, screened and read many books, patents, and magazines and also approached many companies and manufacturers of plant components who kindly shared their knowledge with me. Mrs. Dipl.-Ing. Angelika Steinhauser assisted

XVIII Preface

me in writing this book. The first impulse to publish all the knowledge in this book was been clearly given by Mr. Dipl.-Ing. Steffen Steinhauser. We, the authors, thank him cordially for this. We also thank Dr. F. Weinreich of Wiley-VCH Verlag GmbH & Co KGaA for supporting this idea. Last, but not least, I would like to thank my wife and my son. Without their continuous motivation and very active support, this book would never have been finished.

Preface to the Second Edition

Only a few years ago, energy made of biogas was still only an idea, which started slowly to be implemented in a few countries, mainly in Asia and Central Europe. In the past 2 years, however, it has become a topic which is talked about worldwide. All over the world small biogas plants are starting up and food producers and large agricultural companies have started to produce energy from waste.

Research has shifted and is now largely focusing on the biology. New microorganisms have been identified which are effective in methanogenic ecosystems. Extensive analyses were carried out particularly to understand specific methanogenic ecosystems such as those found in the intestinal tract of termites able to decompose cellulose. Further, it was questioned whether indeed the methanogenic microorganisms are solely critical. Instead, the protists on which the methanogens kind of ride may be critical. Given the complexity of this topic, a whole new chapter, "Methanogenic Ecosystems," was added which presents the current knowledge in that area.

Within the last few years, many process technologies mentioned in the first edition have been approved. Not all were pursued and these are not included in this second edition.

Further, this second edition is enhanced by the results of new studies which were conducted at the biogas institute of Prof. Dr.-Ing. Deublein.

It now also provides an overview of laboratory analyses conducted in the laboratories of the plant owners to optimize the biogas yield and of additives preferred in industry. This knowledge is of great importance as biogas plants today are often large plants providing megawatts of power which are fed into the existing natural gas networks. For those plants it is critical that the biology always works at its optimum and that the biogas yield is as high as possible, which can be influenced by various additives such as enzymes and trace minerals.

One of the chapters, originally covering the relevant laws and regulations in Germany, was shortened without cutting any of the questionnaires, which should be followed to provide sufficient safety of biogas plants.

The authors

Symbols and Abbreviations

α	Plate inclination	
$(\alpha_{\rm BR})_{\rm a}$	Heat transfer coefficient at the	
· · · ·	wall outside the bioreactor	$W m^{-2} K^{-1}$
$(\alpha_{\rm BR})_{\rm i}$	Heat transfer coefficient at the	
	wall inside the bioreactor	$W m^{-2} K^{-1}$
$(\alpha_{\rm H})_{\rm a}$	Heat transfer coefficient at the	
(II)a	wall outside the heating pipe	$W m^{-2} K^{-1}$
$(\alpha_{\rm H})_{\rm i}$	Heat transfer coefficient at the	
(wall inside the heating pipe	$W m^{-2} K^{-1}$
$\Delta artheta_{\scriptscriptstyle m BH}$	Average temperature difference	
- 511	between heating medium	
	and substrate	°C
$\Delta \vartheta_{ m BR}$	Maximum temperature difference	
Dir	between substrate and the	
	outside of the reactor	°C
$\Delta artheta_{ m H}$	Temperature difference between	
11	inlet and outlet of the heating	
	medium to the bioreactor	°C
$\Delta \vartheta_{ m SU}$	Maximum temperature difference	
50	between substrate inside and	
	outside of the reactor	°C
$\Delta P_{\rm VP}$	Pressure head of the preparation	
V I	tank pump	bar
$\Delta T_{\rm F}, \Delta T_{\rm A}$	Differences in absolute	
<u> </u>	temperatures	К
$\Delta G_{ m f}^{\prime}$	Gibbs free energy	kJ mol ⁻¹
ε	Porosity	%
\mathcal{E}_{FS}	Porosity of Siran	%
$\eta_{ m el}$	Efficiency to produce	
	electrical energy	%
$\eta_{ ext{K}}$	Efficiency of the compressor	%
$\eta_{ m th}$	Efficiency to produce heat	%
	, .	

Biogas from Waste and Renewable Resources. 2nd Ed., D. Deublein and A. Steinhauser Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 978-3-527-32798-0

$\eta_{ m vp}$	Efficiency of the preparation	
111	tank pump	%
Θ	Sludge age	d
$\vartheta_{_{\mathrm{HA}}}$	Temperature of the heating	G
UHA	medium at the outlet	°C
$artheta_{ ext{HF}}$	Temperature of the heating	G
OHE	medium at the inlet	°C
ϑ_{S}	Dewpoint temperature	°C
$v_{\rm s}$		°C
$artheta _{A}$	Temperature	°C
$artheta_{A}$	Lowest ambient temperature	C
$v_{ m BR}$	Temperature of the substrate in the bioreactor	°C
λ	Air: fuel ratio for	C
λ		
	stoichiometrically equivalent air:fuel ratio λ = 1	
1		_
$\lambda_{ m BR}$	Heat transmission coefficient of the insulation of the	
		$W m^{-1} K^{-1}$
	bioreactor	
ρ _{MK}	Grinding ball density	$kg m^{-3}$
ρ^*	Relative density	kg Nm ⁻³
$ ho_{ ext{BG}}*$	Normal biogas density	kg Nm ⁻³
$ ho_{ ext{FS}}$	Density of Siran	$g cm^{-3}$
$ ho_{ m G}$	Density of substrate	kg m ^{-3}
$\rho_{\rm S}$	Densitiy of co-ferment	$\mathrm{kg}\mathrm{m}^{-3}$ $\mathrm{kg}\mathrm{m}^{-3}$
$\rho_{\rm w}$	Density of heating medium	ĸgm
$(P_{\rm BRR})_{\rm tot}$	Total power consumption of the agitators	kW
$(P_{\rm SC})_{\rm tot}$	Total power consumption of the	
(- 30/101	co-ferment conveyors	kW
A	Area for cultivation of energy	
	plants	m ²
$A_{\scriptscriptstyle m BR}$	Surface of the bioreactor, where	
BR	heat is lost	m ²
A_{COD}	Degree of decomposition	
	determined by the COD value	_
$A_{ m D}$	Total available area	ha
$A_{ m Dtechn}$	Technically usable area	ha
$A_{ m M}$	Cultivation area for maize	ha
$A_{\rm S}$	Degree of decomposition	
	determined by oxygen	
	demand value	_
AT_4	Breathing activity	$mgO_2g_{DM}{}^{-1}$
В	Disintegration intensity	kJ kg ⁻¹
$B_{ m A}$	Bioreactor area load	$kg_{DM} m^{-2} d^{-1}$
$B_{ m BR}$	Average bioreactor volume load	$kg_{\rm DM}m^{-3}d^{-1}$

bn	billion	
BOD_5	Difference in oxygen	
	concentration (day 1 vs. day 5)	mgO_2l^{-1}
$B_{ m R}$	Bioreactor volume load	$kg_{DM} m^{-3} d^{-1}$ or $kg_{COD} m^{-3} d^{-1}$
B_{rodmsb}	Organic sludge load	$kg kg^{-1} d^{-1}$
B_{RS}	Total sludge load	$kg_{COD}kg_{DM}^{-1}d^{-1}$
Bs	Breadth	m
\mathcal{C}_0	Concentration of organics	
	in the substrate	$kg_{COD}m^{-3}$
C ₁ , C ₂	Constants	
COD	Chemical oxygen demand	
COD	COD value	mgO_2l^{-1}
COD_0	COD value of untreated sample	mgO_2l^{-1}
COD_{max}	Maximum COD value	mgO_2l^{-1}
Cs	Biomass concentration in	
	excess sludge	$kg_{COD}m^{-3}$
$c_{\rm SU}$	Specific heat capacity of	
	the substrate	$kJ kg^{-1} K^{-1}$
C _w	Specific heat capacity of the	
	heating medium	$kJ kg^{-1} K^{-1}$
D	Net income from fertilizer	US \$ a^{-1}
$D_{ m BR}$	Diameter of bioreactor	m
$D_{ m BRl}$	Diameter of discharge pipe	m
$D_{\rm BRR}$	Outer diameter of agitator	m
$D_{ m D}$	Decanter diameter	m
$D_{\rm E}$	Diameter of residue storage tank	m
$d_{ m FS}$	Pore diameter of Siran	m
$D_{ m HR}$	Diameter of heating pipe	m
$D_{ m IN}$	German industrial norm	_
$D_{ m L}$	Diameter of aeration pipe	m
DM	Dry matter	% or gl^{-1}
$\mathrm{DM}_{\mathrm{BR}}$	Flow rate of dry matter into	
	the bioreactor	$kg_{DM} d^{-1}$
d _{MK}	Grinding ball diameter	m
DM _{R,e}	Dry matter in outflow of	
	sludge bed reactor	g l ⁻¹
$D_{ m PT}$	Diameter of preparation tank	m
$D_{ m W}$	Diameter of windings of	
	heating pipe	m
Ε	Nominal capacity of electrical	
	power of the CHP	kW
$E_{\rm Eel}$	Electrical power consumption	
	of the plant	kW
$E_{ m el}$	Capacity of the plant to deliver	
	electrical energy	kW

XXII Symbols and Abbreviations

E_{M}	Yield of CH ₄ per biomass	$\rm kmolCH_4kg^{-1}$
$E_{OILspec}$	Specific energy per volume	
	of ignition oil	$kWhl^{-1}$
$E_{ m R}$	Theoretical yield	$\mathrm{Mg}_{\mathrm{DM}}\mathrm{ha}^{-1}\mathrm{a}^{-1}$
$E_{ m Rmax}$	Maximum theoretical yield	$\mathrm{Mg}_{\mathrm{DM}}\mathrm{ha}^{-1}\mathrm{a}^{-1}$
$E_{\rm S}$	Solar energy	kW
$E_{ m spec}$	Specific biogas energy	kWm^{-3}
$E_{ m th}$	Capacity of the plant to	
	deliver heat	kW
$E_{ m tot}$	Total energy	kW
$f_{ m VBR}$	Factor to increase the	
	bioreactor volume	-
$f_{ m VE}$	Factor to increase the residue	
	storage tank	_
$f_{ m VPT}$	Factor to increase the	
	preparation tank	_
G	Net income from current	US a^{-1}
GB_{21}	Gas formation within 21 days	$nlkg_{DM}^{-1}$
GVE	Animal unit	-
h_1, h_2, h_3, h_4, h_5	Specific enthalpies at different	
	stages of the process	$\rm kJkg^{-1}$
$H_{ m BP}$	Filling height for pellet sludge	m
$H_{\rm BR}$	Bioreactor height	m
$H_{ m BS}$	Height of the gas/solid separator	m
$H_{\rm E}$	Height of the residue	
	storage tank	m
$H_{\mathrm{O,N}}$, $H_{\mathrm{U,N}}$	Calorific value	$kWhm^{-3}$
$H_{ m PT}$	Height of the preparation tank	m
$H_{\rm S}$	Height of silo	m
IN	Inhabitant	
I_{SV}	Sludge volume index	Mgl ⁻¹
K, K_1, K_2	Total investment costs	US\$
KA	Plant investment costs	
	without CHP	US\$
KA_{spec}	Specific investment costs for the	
	biogas plant per unit volume	
	of the bioreactor	$US\$m^{-3}$
KB	Investment costs for	
	concrete works	US\$
$k_{\scriptscriptstyle \mathrm{BR}}$	k-Factor of the bioreactor wall	
	with insulation	$W m^{-2} K^{-1}$
$KB_{\rm spec}$	Specific price for sold current	US kWh^{-1}
$K_{\rm CHP}$	Investment costs for the CHP	US\$
$k_{ m H}$	<i>k</i> -Factor of the heating pipes	$W m^{-2} K^{-1}$
KK	Amortization per year	
	for the CHP	$US\$a^{-1}$

KK _{spec}	Specific investment costs for	
	CHP per unit capacity of	
	electrical energy	US k W^{-1}
K _{OIL}	Cost for ignition oil	US a^{-1}
$K_{OILspec}$	Specific cost for ignition oil	US l^{-1}
KP	Local overhead costs	US a^{-1}
KP_{spec}	Specific local overhead costs	$US\$h^{-1}$
KR	Costs for cultivation of	
	renewable resources	US a^{-1}
$KR_{\rm spec}$	Specific costs for cultivation of	
	renewable resources	$US\$ha^{-1}a^{-1}$
KS	Costs for power consumption	US a^{-1}
KS_{spec}	Specific costs for power	
•	consumption	US kWh^{-1}
KT	Investment costs for	
	technical equipment	US\$
KV	Insurance costs	US a^{-1}
KW	Costs for heat losses	US\$
KW _{spec}	Specific price for sold heat	US k Wh^{-1}
KX	Maintenance costs for	
	the concrete work	US a^{-1}
KY	Maintenance costs of	•
	technical equipment	US a^{-1}
ΚZ	Maintenance costs of the CHP	US a^{-1}
LD	Decanter length	m
L _{HR}	Length of the heating pipe	m
$L_{\rm S}$	Length of the silo	m
<i>m</i> *	Flow of gas to the compressor	$m^{3}h^{-1}$
$\dot{M}_{\rm BR}$	Produced flow of biogas	Mg d ⁻¹
$M_{\rm BR}$ $M_{\rm F}$	Molecular weight	kg kmol ⁻¹
$\dot{M}_{\rm G}, \dot{M}_{\rm G1}, \dot{M}_{\rm G2}$	Flow rate of substrate	Mg d ⁻¹
$\dot{M}_{\rm G1}, M_{\rm G1}, M_{\rm G2}$ $\dot{M}_{\rm oil}$	Flow rate of ignition oil	Mgd ⁻¹
M _{oil} M _S	Flow rate of co-ferments	Mga ⁻¹
Mio	Million	Mga
N	Normal	

$n_{\rm BRR}$	Revolutions of an agitator	rpm
Ne _{BRR}	Newton number of an agitator	
n.s.	Not specified	1
oDM	Organic dry matter	kg_{COD} or kg_{DM}
$oDM_{R,e}$	oDM in the outflow of a	1_1
0	sludge bed reactor	gl^{-1}_{2}
$O_{\rm FSspec}$	Specific surface area of Siran	$m^2 m^{-3}$
O _{spec}	Specific surface area	$m^2 m^{-3}$
OUR	Oxygen uptake rate	$mgl^{-1}min^{-1}$
OUR_0	Oxygen uptake rate of	
	untreated substrate	$mgl^{-1}min^{-1}$

p_1	Biogas pressure before	
	compressing	bar
p_2	Biogas pressure after	
	compressing	bar
P_{A}	Power consumption of	
	compressor	kW
$P_{\rm BRR}$	Power consumption of agitator	kW
PE	Population equivalent	
$P_{ m econ}$	Economic potential	$kWha^{-1}$
$\overline{P}_{ m econ}$	Specific economic potential	$kWh ha^{-1}a^{-1}$
$P_{\rm K}$	Power consumption of the	
	air compressor	kW
$p_{ ext{K1}}$	Pressure before compressor	bar
$p_{\rm K2}$	Pressure after compressor	bar
$P_{\rm SC}$	Power consumption of a	
	co-ferment conveyor	kW
$P_{ m techn}$	Technical potential	$kWha^{-1}$
$\overline{P}_{ ext{techn}}$	Specific technical potential	$kWh ha^{-1}a^{-1}$
$P_{ m theor}$	Theoretical potential	$kWha^{-1}$
$\overline{P}_{ ext{theor}}$	Specific theoretical potential	$kWh ha^{-1}a^{-1}$
$P_{\rm VP}$	Power consumption of	
	the pumps	kW
$Q_{\rm BR}$	Heat loss of the bioreactor	kW
Q_{SU}	Required energy to heat	
	the substrate	kW
$Q_{\rm V}$	Total heat loss	kW
$R_{\rm CH_4}$	Special gas constant for CH ₄	${ m kJ}{ m kg}^{-1}{ m K}^{-1}$
S	Overlapping	mm
S _{BR}	Thickness of the insulation	
	of the bioreactor	m
Т	Absolute temperature of the gas	
	to be compressed	K
t	Residence time	d
$t_{ m B}$	Annual amortization for	
	concrete works	US a^{-1}
$t_{ m BR}$	Residence time in the bioreactor	d
$t_{ m BRl}$	Time for discharging the	
	reactor content	h
$t_{\rm BRR}$	Time of operation of an agitator	$\min h^{-1}$
$t_{ m E}$	Residence time in the residue	
	storage tank	d
$t_{ m K}$	Time of amortization for	
	the CHP	а
TLV	Treshold limit value = PEL,	
	permissible exposure limit	

Symbols and Abbreviations XXV

t_{\min}	Minimum tolerable theoretical	
rmm	residence time	h
TOC	Total organic carbon	
TOC	Total organic carbon in	
100	the substrate	mgl^{-1}
TOC*	Total organic carbon in	11161
100	the residue	% DM
$t_{ m P}$	Time of local work	h
$T_{\rm PT}$	Residence time in the	11
1 pT		d
+	preparation tank	u h a ⁻¹
t _s	Annual operation time	Пa
$t_{\rm SC}$	Running time of a co-ferment	1, 1-1
,	conveyor	$h d^{-1}$
$t_{ m T}$	Annual amortization for	ττ C Φ1
	technical equipment	US a^{-1}
$t_{\rm TS}$	Residence time in the activated	1
	sludge tank	d
V _A	Velocity of the upstream	$m h^{-1}$
$V_{ m BR}$	Bioreactor volume	m^3
$\nu_{\rm BRl}$	Velocity in the discharge pipe	$m s^{-1}$
$V_{\rm E}$	Volume of residue storage tank	m^3
$\nu_{\rm F}$	Velocity of gas in gas pipes	$m s^{-1}$
$v_{\rm G}$	Velocity of inflow	$m h^{-1}$
$V_{\rm G}^{*}$	Inflow rate	$m^{3}d^{-1}$
V_{GS}	Volume of the gas holder	m ³
$ u_{\rm H}$	Velocity of the heating medium	
	in the pipe	${ m ms^{-1}}$
V_{K}	Volume of compressor	
	pressure vessel	m ³
$\nu_{\rm L}$	Velocity of air in aeration pipe	${ m ms^{-1}}$
$V_{ m PT}$	Volume of the preparation tank	m ³
$V_{ m S}$	Silo volume	m ³
$\nu_{\rm u}$	Rotational velocity of the	
	agitator system	${ m ms^{-1}}$
$\nu_{\rm W}$	Velocity of the substrate in heat	
	exchanger pipes	${ m ms^{-1}}$
$\dot{V}_{ m BR}$	Produced flow of biogas	$m^3 d^{-1}$
$\dot{V}_{\rm E}$	Feedback from the residue	
	storage tank to the bioreactor	$m^3 d^{-1}$
$\dot{V}_{ m K}$	Compressor throughput	Nm^3h^{-1}
$\dot{V}_{ m L}$	Volume rate of air in the	
	aeration pipe	Nm^3h^{-1}
$\dot{V}_{ m S}$	Volumetric flow of excess sludge	$m^3 d^{-1}$
$\dot{V}_{ m SC}$	Volume flow of co-ferment	
	in the conveyor	$m^3 h^{-1}$

XXVI Symbols and Abbreviations

$\dot{V}_{ m Oil}$	Volume rate of ignition oil	$m^{3}d^{-1}$
$\dot{V}_{ m VP}$	Flow rate of the preparation	
	tank pump	$m^3 h^{-1}$
$\dot{V}_{ m w}$	Flow rate of heating medium	
	in the pipe	$m^3 h^{-1}$
W	Net income from heat	US a^{-1}
W _G	Gas velocity in empty reactor	$Nm^{3}m^{-2}s^{-1}$
$W_{ m O}$, $W_{ m O,N}$, $W_{ m U,N}$	Wobbe index, upper Wobbe	
	index, lower Wobbe index	$kWhm^{-3}$
Ws	Area load	$m^3 m^{-2} h^{-1}$
Wt	Specific work of the compressor	kJ kg⁻¹
X	Biomass concentration in	
	the reactor	$kg_{\rm DM}m^{-3}$
$x_{ m B}$	Fraction of the investment costs	
	without CHP for concrete	
	works	-
x_{T}	Fraction of the investment costs	
	without CHP for technical	
	equipment	-
$\gamma_{\rm B}$	Specific maintenance costs of	
	the concrete work	US a^{-1}
Уснр	Specific maintenance costs	
	for CHP	US a^{-1}
γт	Specific maintenance costs of	
	technical equipment	US a^{-1}
Ζ	Fraction of liquefied methane	_
Ζ	Insurance rate	US a^{-1}
Z_{R}	Interest rate	US a^{-1}

XXVII

Acknowledgments

The following companies, institutions, and individuals have kindly provided photographs and other illustrations. Their support is gratefully acknowledged.

Abschlussbericht Projekt 4: Verbesserter Abbau von Klärschlämmen durch Zellaufschluss der DFG-Forschergruppe "Biologische Prozesse mit dispersen Feststoffen" – DFG Abschlussbericht Projekt 4: Verbesserter Abbau von Klärschlämmen durch Zellaufschluss der DFG-Forschergruppe "Biologische Prozesse mit	Figure 27.7a and b
dispersen Feststoffen", Germany	Figure 39.16
AgriKomp GmbH	Figure 19.1(e)
AgriKomp GmbH	Figure 27.2c
AgriKomp GmbH	Figure 29.2
AgriKomp GmbH	Figure 31.4
Awite Bioenergie GmbH	Figure 24.1
BAG-Budissa-Agroservice GmbH	Figure 26.1
Bekon-Energy GmbH	Figure 41.1
Bioferm GmbH	Figure 43.1f
Burkhard Meiners, AgroEnergien	Figure 29.3
Cenotec GmbH, Greven	Figure 16.6(c)
Cenotec GmbH, Greven	Figure 31.5a and b
Cenotec GmbH, Greven	Figure 43.1a, b, d
Coop, Switzerland (www.coop.ch)	Figure 16.6(a)
Daad Saffarini, Associate Professor, University of	
Wisconsin-Milwaukee, Department of	
Biological Sciences	Figure 13.5
Dr. W. Schmidt, Zuchtleiter Inland der KWS SAAT AG	Figure 3.7a
DrIng. St. Battenberg, Dissertation, Carola-Wilhelmina	
University, Braunschweig, 2000	Figure 13.4d
Filox Filtertechnik GmbH	Figure 21.1(b)
Flottweg GmbH	Figure 21.1(c)
"Four-in-One" Biogas System in Northern China	Figure 5.3 a–d

Biogas from Waste and Renewable Resources. 2rd Ed., D. Deublein and A. Steinhauser Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 978-3-527-32798-0

Gerardo P. Baron	Figure 16.6(e)
Hexis AG, Winterthur, Switzerland	Figure 48.14
Holger Döbert, Radolfzell	Figure 8.3
home.landtag.nrw.de/mdl/reiner.priggen/	riguie 6.5
Lathen-AbholungausgegorenesMaterial.jpg	Figure 29.1
ICA Japan (www.icajapan.org)	Figure 5.3g
ifm-geomar	Figure 7.7
Ishii iron works Ltd	Figure 43.1e
Klein Abwasser- und Schlammtechnik GmbH	Figure 21.1(a)
Kompogas AG	Figure 48.1b
Landratsamt Freising (www.kreis-fs.de)	Figure 43.2
Max-Planck-Institut für Züchtungsforschung	Figure 3.7b
MDE Dezentrale Energiesysteme GmbH	Figure 48.1e
MTU-CFC GmbH	Figure 48.1d
Pondus-Verfahren GmbH	Figure 11.22b
	-
Protego Report No. 27/2003 RECK-Technik GmbH & Co. KG	Figure 24.4
	Figure 11.22a
Ritter Apparatebau GmbH	Figure 15.5
Schmack Biogas AG	Figure 27.2e
Schmack Biogas AG, Schwandorf	Figure 16.6(b)
Scientific Engineering Centre "Biomass," Kiev	Figure 5.3h
Sicherheitsregeln für landwirtschaftliche	
Biogasanlagen der landwirtschaftlichen	T ' 14.2
Berufsgenossenschaften Ausgabe 2002	Figure 14.2
Siemens AG	Figure 48.1c
St. Battenberg, Dissertation, Carola-Wilhelmina	
University, Braunschweig, 2000; available at	T: 20.45
www-public.tu-bs.de	Figure 39.15
Stetter & R. Rachel, Universität Regensburg	Figure 13.4b, c
SUMA GmbH	Figure 19.1(d)
SunTechnics	Figure 5.3f
Thoeni Industriebetriebe GmbH, Austria	Figure 16.6(d)
Turbec SpA	Figure 48.1f
U.T.S. Umwelttechnik Süd GmbH	Figure 27.2d
Vorspann-Technik GmbH & Co. KG	Figure 16.3(d) and (e)
VTA Engineering und Umwelttechnik GmbH	Figure 48.1g
WELtec BioPower GmbH	Figure 19.1(a)
www.mvm.uni-karlsruhe.de	Figure 3.7c
www.solarenergie.co.za	Figure 5.3e